Physics 798S Superconductivity Spring 2016 Homework 2 Due Tuesday, 16 February, 2016

- 1. The Schrödinger equation for the Macroscopic Quantum Wavefunction $\Psi(\mathbf{r},t)$ for a superconductor. $i\hbar \frac{\partial \Psi}{\partial t} = \frac{1}{2m^*} \left(-i\hbar \vec{\nabla} q^* A \right)^2 \Psi + q^* \phi \Psi$
- a) Under the assumption that the number density $n^*(\mathbf{r},t)$ is constant in space and time, derive the energy-phase relationship:

$$-\hbar \,\partial\theta/\partial t = (1/2n^*) \,\Lambda \, {J_s}^2 + q^* \,\phi$$

from the real part of the macroscopic quantum Schrödinger equation. Interpret this equation physically.

- Now assume that n*(r,t) is NOT constant in either space or time. Show that the imaginary part of the macroscopic Schrödinger equation yields:
 ∂n*/∂t = ∇• (n* v_s)
 Interpret this result physically (it may help to multiply both sides by q*).
- **2.** Fluxoid quantization can be written as $\oint_C (\Lambda \vec{J}_s + \vec{A}) \cdot d\vec{l} = n\Phi_0$, where n is any positive or negative integer or zero. Using the expression for the supercurrent density in terms of the superfluid velocity, $\vec{J}_s = n * q * \vec{v}_s$, and the definition of the canonical momentum, $\vec{p}_{can} = m * \vec{v}_s + q * \vec{A}$, show that fluxoid quantization is an expression of the Bohr-Sommerfeld quantization condition: $\oint \vec{p} \cdot d\vec{q} = nh$, where (q, p) are conjugate coordinate and momentum, and h is Planck's constant.
- 3. A ring having 10 μ m inner diameter and a film thickness of 1 μ m is formed of a material having penetration depth $\lambda = 50$ nm at the temperature under consideration. Find the current density (in A/cm²) at the inner surface of the ring when the ring contains one flux quantum.